Wave Field Synthesis

WFS is a spatial sound rendering technique that generates a true sound field using loudspeaker arrays [Berkhout et al., 1993]. Wave fields are synthesized based on virtual sound sources at some position in the sound stage behind the loudspeakers or even inside the listening area. In other words, contrary to traditional spatialization techniques such as stereo or surround sound, the localization of virtual sources in WFS does not depend on or change with the listener’s position.

When using sound reproduction based on WFS, sound fields can be generated in a spatially and temporally correct way. Therefore, listeners experience the feeling that the origin of the sound is actually in the position of the virtual sources. Furthermore, the synthesized wave field is correct for an extended listening area, with much larger dimensions than the “sweet spot” of the current surround systems, such as the commercial 5.1 channel surround.

The major drawback is that the number of speakers needed for an acceptable sound field representation is very high (usually in the order of hundreds). Moreover, WFS algorithm requires a considerable amount of computational power. As a consequence, three-dimensional WFS systems are still not practical although mathematical formulations are already available.

See more at : http://en.wikipedia.org/wiki/Wave_field_synthesis


Jens Ahrens – Analytic methods of sound field synthesis [Recurs electrònic] 

Basilio Pueo Ortega  – Analysis and enhancement of multiactuator panels for wave field synthesis reproduction (Anexo A).

Sergio Bleda Pérez – Contribuciones a la implementación de sistemas de Wavefield Synthesis  – Section 2.5 (Spanish)

Sasha Spors – The Theory of Wave Field Synthesis Revisited


http://www.mattmontag.com/projects-page/wfs-visualizer  –  Applet that simulates wave field synthesis

http://www.mattmontag.com/projects-page/wfs-designer – Open-source, cross-platform application for performing wave field synthesis with large speaker arrays